Tuesday, 16 February 2016

Red Biotechnology

Red Biotechnology

Red Biotechnology deals with working for human health and improving life style by using advancements in technology and innovation.

In medicine, biotechnology has become an integral part in diagnostics, gene therapy, clinical and contract research and trials, bioactive therapeutic, stem cell research, genetic engineering and in the development and production of new drugs for treating various life threatening diseases. Increased use of combination vaccines, such as DPT with Hepatitis B, Hepatitis A and injectable polio vaccine, besides several veterinary and poultry vaccines are examples of biotechnology application in medicinal arena.

Tissue engineering, which deals with tissue implantation following the cultivation of cells on bio-compatible and bio-degradable materials is the new field offering great application for human development and alleviating of human sufferings. Besides the production of artificial skin, tissue-engineering products predominantly service the orthopaedics markets through the supply of cartilage, bone and spinal disc replacements.

Increased application of biotechnology in the areas of cancer research and in the treatment of Parkinson’s disease by discovering mutations and amplifications of a particular gene which induces Parkinson’s disease is a revolution for opening new frontiers in finding better and more effective treatment for the diseases.

Biochips are also developing as important tools in the further development of individualised medicine. Biochips are miniaturised analytical tools that are used in diagnostics. They enable the rapid analysis of a patient’s individual genetic make-up. They accelerate the development of new drugs, enable the early diagnosis of diseases, the adaptation of drug dosage to the patients’ individual requirements and hence the reduction of the number of unwanted side effects

It is also known that certain substances are only effective in some patients because of their particular genetic disposition. Scientific studies have shown that a particular anti-cancer drug is only effective in about 10 percent of all cancer patients. It is possible to genetically determine whether a particular patient belongs to the group of patients for whom the drug is effective. Another study has shown that patients react differently to dosages of anti-depression drugs and beta blockers for keeping hyper tension in check depending upon their metabolism level and genetic disposition. Molecular genetics has shown that it is possible to determine the best possible drug dose or to clarify whether a particular drug is actually effective. It is, of course, also possible to design drugs according to the specific genetic requirements of specific groups of patients. All this leads to tremendous research potential and industrial application for a market which is ever growing.

Needless to say that red biotechnology has great application not only for the growth of the industry but is also useful for a more philanthropic purpose- to use the technology to alleviate human sufferings and enhance the quality of life

No comments:

Post a Comment